Abstract

In 2015 Halina France-Jackson introduced the notion of a \({\sigma}\)-ring i.e. a ring R with the property that if I and J are ideals of R and for all \({i\in I}\), \({{j\in J}}\), there exist natural numbers m, n such that \({i^{m}j^{n} =0}\), then I = 0 or J = 0. It is shown that \({\sigma}\) is a special class which coincides with the class \({\rho}\) of all prime nil-semisimple rings. This implies that the upper nil radical of any ring R is the intersection of all ideals I of the ring such that R/I is a \({\sigma}\)-ring. In this paper we introduce classes of rings equivalent to the \({\sigma}\)-rings and then give characterizations of the upper nil radical in terms of these rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.