Abstract

ABSTRACT Anosmin-1 is an extracellular matrix glycoprotein which underlies the X chromosome-linked form of Kallmann syndrome. This disease is characterized by hypogonadism due to GnRH deficiency, and a defective sense of smell related to the underdevelopment of the olfactory bulbs. This study reports that anosmin-1 is an adhesion molecule for a variety of neuronal and non-neuronal cell types in vitro. We show that cell adhesion to anosmin-1 is dependent on the presence of heparan sulfate and chondroitin sulfate glycosaminoglycans at the cell surface. A major cell adhesion site of anosmin-1 was identified in a 32 amino acid (32R1) sequence located within the first fibronectin-like type III repeat of the protein. The role of anosmin-1 as a substrate for neurite growth was tested on either coated culture dishes or monolayers of anosmin-1-producing CHO cells. In both experimental systems, anosmin-1 was shown to be a permissive substrate for the neurite growth of different types of neurons. Mouse P5 cerebellar neurons cultured on anosmin-1 coated wells developed long neurites; the 32R1 peptide was found to underly part of this neurite growth activity. When the cerebellar neurons were cultured on anosmin-1-producing CHO cells, neurite growth was reduced as compared to wild-type CHO cells; in contrast, no difference was observed for E18 hippocampal and P1 dorsal root ganglion neurons in the same experimental system. These results indicate that anosmin-1 can modulate neurite growth in a cell-type specific manner. Finally, anosmin-1 induced neurite fasciculation of P5 cerebellar neuron aggregates cultured on anosmin-1-producing CHO cells. The pathogenesis of the olfactory defect in the X-linked Kallmann syndrome is discussed in the light of the present results and the recent data reporting the immunohistochemical localisation of anosmin-1 during early embryonic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.