Abstract
BackgroundThe diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya.MethodsThree villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat.ResultsCaptures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance.ConclusionThese results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.
Highlights
The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and the dynamics of malaria transmission
Anopheles arabiensis is the predominant vector of malaria, and the only sibling species of the An. gambiae species complex recorded in the area [9]
Larval abundance Captures of 1st-2nd, 3rd-4th and pupae accounted for 78.2% (n = 22,885), 10.9% (n = 3,192) and 10.8% (n = 3,175), respectively of the total Anopheles immatures sampled (n = 29,252)
Summary
The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and the dynamics of malaria transmission. Irrigation development projects have been associated with negative impacts on human health, with respect to vector-borne diseases. There is evidence for direct relationship between irrigation development with the creation of large and more permanent larval habitats that support higher densities of malaria vectors. Such observations have been made in Kenya [7,8,9,10,11,12], Burkina Faso [13], The Gambia [14], Madagascar [15], Senegal [16] and Mali [4]. Proper understanding of the factors that promote mosquito production may provide useful information on how to mitigate the negative effects of irrigated rice cultivation on human health
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.