Abstract

The molecular biology of disease vectors, particularly mosquitoes, has experienced a remarkable progress in the past two decades. This is mainly attributed to methodological advances and the emerging genome sequences of vector species, which have brought experimental biology to an unprecedented level. It is now possible to determine the entire transcriptome of Anopheles gambiae at a variety of conditions, with a low per-gene effort and cost. Proteomic profiles can be generated for as small samples as the hemolymph, and transient reverse genetic and stable germ line based transgenic analyses can be performed to analyze gene function. High throughput screening for receptors and ligands can be used to characterize interactions between vectors and pathogens. At the current breathtaking rates of data production it is essential to question and evaluate the relevance of laboratory infection models to the real disease transmission systems. The majority of scientific discoveries in mosquito molecular biology have been based on highly inbred laboratory strains and rodent malaria parasite infection models, which may differ substantially to their counterparts that transmit human malaria in the field. This review addresses the recent advances in high throughput transcription analyses of Anopheles responses to infection, and discusses considerations for the use of laboratory malaria infection models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.