Abstract

Anonymity of public key encryption (PKE) requires that, in a multi-user scenario, the PKE ciphertexts do not leak information about which public keys are used to generate them. Corruptions are common threats in the multi-user scenario but anonymity of PKE under corruptions is less studied in the literature. In TCC 2020, Benhamouda et al. first provide a formal characterization for anonymity of PKE under a specific type of corruption. However, no known PKE scheme is proved to meet their characterization. To the best of our knowledge, all the PKE application scenarios which require anonymity also require confidentiality. However, in the work by Benhamouda et al., different types of corruptions for anonymity and confidentiality are considered, which can cause security pitfalls. What’s worse, we are not aware of any PKE scheme which can provide both anonymity and confidentiality under the same types of corruptions. In this work, we introduce a new security notion for PKE called ANON-RSO $$_{ {k} }$$ &C security, capturing anonymity under corruptions. We also introduce SIM-RSO $$_{ {k} }$$ &C security which captures confidentiality under the same types of corruptions. We provide a generic framework of constructing PKE scheme which can achieve the above two security goals simultaneously based on a new primitive called key and message non-committing encryption (KM-NCE). Then we give a general construction of KM-NCE utilizing a variant of hash proof system (HPS) called Key-Openable HPS. We also provide Key-Openable HPS instantiations based on the matrix decisional Diffie-Hellman assumption. Therefore, we can obtain various concrete PKE instantiations achieving the two security goals in the standard model with compact ciphertexts. Furthermore, for some PKE instantiation, its security reduction is tight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.