Abstract

A team consisting of an unknown number of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node. Agents are anonymous (identical), execute the same deterministic algorithm and move in synchronous rounds along links of the network. An initial configuration of agents is called gatherable if there exists a deterministic algorithm (even dedicated to this particular configuration) that achieves meeting of all agents in one node. Which configurations are gatherable and how to gather all of them deterministically by the same algorithm?We give a complete solution of this gathering problem in arbitrary networks. We characterize all gatherable configurations and give two universal deterministic gathering algorithms, i.e., algorithms that gather all gatherable configurations. The first algorithm works under the assumption that an upper bound n on the size of the network is known. In this case our algorithm guarantees gathering with detection, i.e., the existence of a round for any gatherable configuration, such that all agents are at the same node and all declare that gathering is accomplished. If no upper bound on the size of the network is known, we show that a universal algorithm for gathering with detection does not exist. Hence, for this harder scenario, we construct a second universal gathering algorithm, which guarantees that, for any gatherable configuration, all agents eventually get to one node and stop, although they cannot tell if gathering is over. The time of the first algorithm is polynomial in the upper bound n on the size of the network, and the time of the second algorithm is polynomial in the (unknown) size itself.Our results have an important consequence for the leader election problem for anonymous agents in arbitrary graphs. Leader election is a fundamental symmetry breaking problem in distributed computing. Its goal is to assign, in some common round, value 1 (leader) to one of the entities and value 0 (non-leader) to all others. For anonymous agents in graphs, leader election turns out to be equivalent to gathering with detection. Hence, as a by-product, we obtain a complete solution of the leader election problem for anonymous agents in arbitrary graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call