Abstract

Retaining LeLoir glycosyltransferases catalyze the formation of glycosidic bonds between nucleotide sugar donors and carbohydrate acceptors. The anomeric selectivity of trehalose transferase from Thermoproteus uzoniensis was investigated for both d- and l-glycopyranose acceptors. The enzyme couples a wide range of carbohydrates, yielding trehalose analogues with conversion and enantioselectivity of >98%. The anomeric selectivity inverts from α,α-(1 → 1)-glycosidic bonds for d-glycopyranose acceptors to α,β-(1 → 1)-glycosidic bonds for l-glycopyranose acceptors, while (S)-selectivity was retained for both types of sugar acceptors. Comparison of protein crystal structures of trehalose transferase in complex with α,α-trehalose and an unnatural α,β-trehalose analogue highlighted the mechanistic rationale for the observed inversion of anomeric selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call