Abstract
One of the important design criteria for distributed systems and their applications is their reliability and robustness to hardware and software failures. The increase in complexity, inter connectedness, dependency and the asynchronous interactions between the components that include hardware resources (computers, servers, network devices), and software (application services, middleware, web services, etc.) makes the fault detection and tolerance a challenging research problem. In this paper, we present an innovative approach based on statistical and data mining techniques to detect faults (hardware or software) and also identify the source of the fault. In our approach, we monitor and analyze in realtime all the interactions between all the components of a distributed system. We used data mining and supervised learning techniques to obtain the rules that can accurately model the normal interactions among these components. Our anomaly analysis engine will immediately produce an alert whenever one or more of the interaction rules that capture normal operations is violated due to a software or hardware failure. We evaluate the effectiveness of our approach and its performance to detect software faults that we inject asynchronously, and compare the results for different noise level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.