Abstract
Strain relaxation processes have been investigated in chemically ordered FePd thin layers grown on Pd(001). Microtwins due to the pileup of $a/6$ 〈211〉 dislocations release most of the relaxation. A statistical analysis of scanning tunneling microscopy images provides a detailed understanding of the involved processes and indicates a linear dependence of the relaxation process upon the FePd thickness. Such an unusual behavior is confirmed by reflection high-energy electron diffraction and x-ray diffraction measurements. Through a modeling of the repulsion between the cores of the partial dislocations forming the microtwin, we put forward the mechanism explaining this discrepancy with the Matthews law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.