Abstract

Medical images contain various abnormal regions, most of which are closely related to the lesions or diseases. The abnormality or lesion is one of the major concerns during clinical practice and therefore becomes the key in answering questions about medical images. However, the recent efforts still focus on constructing a generic Visual Question Answering framework for medical-domain tasks, which is not adequate for practical medical requirements and applications. In this paper, we present two novel medical-specific modules named multiplication anomaly sensitive module and residual anomaly sensitive module to utilize weakly supervised anomaly localization information in medical Visual Question Answering. Firstly, the proposed multiplication anomaly sensitive module designed for anomaly-related questions can mask the feature of the whole image according to the anomaly location map. Secondly, the residual anomaly sensitive module could learn a flexible anomaly feature while preserving the information of the original questioned image, which is more helpful in answering anomaly-unrelated questions. Thirdly, the transformer decoder and multi-task learning strategy are combined to further enhance the question-reasoning ability and the model generalization performance. Finally, qualitative and quantitative experiments on a variety of medical datasets exhibit the superiority of the proposed approaches compared to the state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.