Abstract

Small-angle neutron scattering (SANS) measurements have been performed on a disordered block copolymer from deuterated polystyrene (dPS) and self-adhesive poly(isooctyl acrylate) (POA) in order to elicit the effective Flory–Huggins χ, which carries the essence of the copolymer phase behavior. The copolymer sample for the measurement was prepared by blending two polydisperse dPS-b-POAs of different molecular weights, where the overall average size of the blend was low enough to ensure to be in the mean-field region but high enough to have discernible scattering intensities. The SANS profiles for the copolymer were fitted to Leibler's scattering function for a polydisperse copolymer system described by Schulz-Zimm distribution. The resultant χ as a function of inverse temperature was shown to have a strong entropic contribution and a weak enthalpic contribution. By adopting Sanchez-Balasz or ten Brinke-Karasz-type simple analysis for specific interactions, it was found that the entropically dominated χ for dPS-b-POA arises from the steric hindrance of long alkyl side groups of POA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call