Abstract
AbstractSupervised classification is becoming a useful tool in condition monitoring. For example, from a set of measured features (temperature, vibration, etc.), we might be interested in predicting machine failures. Given some costs of class misclassifications and a set of labeled learning samples, this task aims to fit a decision rule by minimizing the empirical risk of misclassifications. However, learning a classifier when the class proportions of the training set are uncertain, and might differ from the unknown state of nature, may increase the misclassification risk when classifying some test samples. This drawback can also occur when dealing with imbalanced datasets, which is common in condition monitoring. To make a decision rule robust with respect to the class proportions, a solution is to learn a decision rule which minimizes the maximum class-conditional risk. Such a decision rule is called a minimax classifier. This paper studies the minimax classifier for classifying discrete or discretized features between several classes. Our algorithm is applied to a real condition monitoring database.KeywordsMinimax classifierUncertain class proportionsImbalanced dataset
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.