Abstract

The increasing discovery of underwater methane leakage underscores the importance of monitoring methane emissions for environmental protection. Underwater remote sensing of methane leakage is critical and meaningful to protect the environment. The construction of sensor arrays is recognized as the most effective technique to increase the accuracy and sensitivity of underwater remote sensing of methane leakage. With the aim of improving the reliability of underwater methane remote-sensing sensor arrays, in this work, a deep learning method, specifically an explainable sparse spatio-temporal transformer, is proposed for detecting the failures of the underwater methane remote-sensing sensor arrays. The data input into the explainable sparse block could decrease the time complexity and the computational complexity (O (n)). Spatio-temporal features are extracted on various time scales by a spatio-temporal block automatically. In order to implement the data-driven early warning system, the data-driven warning return mechanism contains a warning threshold that is associated with physically disturbing information. Results show that the explainable sparse spatio-temporal transformer improves the performance of the underwater methane remote-sensing sensor array. A balanced F score (F1 score) of the model is put forward, and the anomaly accuracy is 0.92, which is superior to other reconstructed models such as convolutional_autoencoder (CAE) (0.81) and long-short term memory_autoencoder (LSTM-AE) (0.66).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.