Abstract
Research states that at least 2.2 billion people have a vision impairment or blindness all over the world. There are many reasons for blindness and few of them are leading causes such as cataract, macular degeneration due to age factor, glaucoma, diabetic retinopathy, corneal opacity, trachoma. In all of them, glaucoma is one of the main causes of blindness. Glaucoma is asymptomatic and non-reversible vision loss disease. This paper presents a method of early detection of glaucoma using deep Neural Network (NN) from the retinal images. In different retinal imaging modalities, fundus images are widely accepted. In deep learning, Convolution Neural Network (CNN) is used for feature extraction from the fundus image, and fully connected feed forward NN (FFNN) is used to find out the level of glaucoma. Typical image processing algorithms are used for feature extraction from fundus images and classified with FFNN. The accuracy is compared among different architectures. The TensorFlow software tool and python language are used for this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.