Abstract
It is essential to develop efficient methods to detect abnormal events, such as car-crashes or stalled vehicles, from surveillance cameras to provide in-time help. This motivates us to propose a novel method to detect traffic accidents in traffic videos. To tackle the problem where anomalies only occupy a small amount of data, we propose a semi-supervised method using Generative Adversarial Network trained on regular sequences to predict future frames. Our key idea is to model the ordinary world with a generative model, then compare a predicted frame with the real next frame to determine if an abnormal event occurs. We also propose a new idea of encoding motion descriptors and scaled intensity loss function to optimize GAN for fast-moving objects. Experiments on the Traffic Anomaly Detection dataset of AI City Challenge 2019 show that our method achieves the top 3 results with F1 score 0.9412 and RMSE 4.8088, and S3 score 0.9261. Our method can be applied to different related applications of anomaly and outlier detection in videos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.