Abstract
The monitoring of the structural health of infrastructures is a very important topic in structural engineering, but unfortunately, there are few established techniques that are applicable in a wide range of situations. In this paper, we present a new method that adapts image analysis tools and methodologies, taken from the field of computer vision, and applies them to the monitoring signals of a railway bridge. We show that our method correctly identifies changes in the structural health of the bridge with very high precision, thus providing a better, simpler, and more general alternative to current methodologies used in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.