Abstract

Anomaly detection is one of the biggest issues of security in the Industrial Internet of Things (IIoT) due to the increase in cyber attack dangers for distributed devices and critical infrastructure networks. To face these challenges, the Intrusion Detection System (IDS) is suggested as a robust mechanism to protect and monitor malicious activities in IIoT networks. In this work, we suggest a new mechanism to improve the efficiency and robustness of the IDS system using Distributional Reinforcement Learning (DRL) and the Generative Adversarial Network (GAN). We aim to develop realistic and equilibrated distribution for a given feature set using artificial data in order to overcome the issue of data imbalance. We show how the GAN can efficiently assist the distributional RL-based-IDS in enhancing the detection of minority attacks. To assess the taxonomy of our approach, we verified the effectiveness of our algorithm by using the Distributed Smart Space Orchestration System (DS2OS) dataset. The performance of the normal DRL and DRL-GAN models in binary and multiclass classifications was evaluated based on anomaly detection datasets. The proposed models outperformed the normal DRL in the standard metrics of accuracy, precision, recall, and F1 score. We demonstrated that the GAN introduced in the training process of DRL with the aim of improving the detection of a specific class of data achieves the best results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.