Abstract
This study explores the application of neural networks for anomaly detection in time series data exhibiting fractal properties, with a particular focus on changes in the Hurst exponent. The objective is to investigate whether changes in fractal properties can be identified by transitioning from the analysis of the original time series to the analysis of the sequence of Hurst exponent estimates. To this end, we employ an LSTM autoencoder neural network, demonstrating its effectiveness in detecting anomalies within synthetic fractal time series and real EEG signals by identifying deviations in the sequence of estimates. Whittle’s method was utilized for the precise estimation of the Hurst exponent, thereby enhancing the model’s ability to differentiate between normal and anomalous data. The findings underscore the potential of machine learning techniques for robust anomaly detection in complex datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.