Abstract

Extremely crowded scenes present unique challenges to video analysis that cannot be addressed with conventional approaches. We present a novel statistical framework for modeling the local spatio-temporal motion pattern behavior of extremely crowded scenes. Our key insight is to exploit the dense activity of the crowded scene by modeling the rich motion patterns in local areas, effectively capturing the underlying intrinsic structure they form in the video. In other words, we model the motion variation of local space-time volumes and their spatial-temporal statistical behaviors to characterize the overall behavior of the scene. We demonstrate that by capturing the steady-state motion behavior with these spatio-temporal motion pattern models, we can naturally detect unusual activity as statistical deviations. Our experiments show that local spatio-temporal motion pattern modeling offers promising results in real-world scenes with complex activities that are hard for even human observers to analyze.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.