Abstract

This survey paper presents a comprehensive and conceptual overview of anomaly detection using dynamic graphs. We focus on existing graph-based anomaly detection (AD) techniques and their applications to dynamic networks. The contributions of this survey paper include the following: i) a comparative study of existing surveys on anomaly detection; ii) a D ynamic G raph-based A nomaly D etection ( DGAD ) review framework in which approaches for detecting anomalies in dynamic graphs are grouped based on traditional machine-learning models, matrix transformations, probabilistic approaches, and deep-learning approaches; iii) a discussion of graphically representing both discrete and dynamic networks; and iv) a discussion of the advantages of graph-based techniques for capturing the relational structure and complex interactions in dynamic graph data. Finally, this work identifies the potential challenges and future directions for detecting anomalies in dynamic networks. This DGAD survey approach aims to provide a valuable resource for researchers and practitioners by summarizing the strengths and limitations of each approach, highlighting current research trends, and identifying open challenges. In doing so, it can guide future research efforts and promote advancements in anomaly detection in dynamic graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.