Abstract
Anomalyq detection in Activities of Daily Living (ADL) plays an important role in e-health applications. An abrupt change in the ADL performed by a subject might indicate that she/he needs some help. Another important issue related with e-health applications is the case where the change in ADL undergoes a linear drift, which occurs in cognitive decline, Alzheimer’s disease or dementia. This work presents a novel method for detecting a linear drift in ADL modelled as circular normal distributions. The method is based on techniques commonly used in Statistical Process Control and, through the selection of a convenient threshold, is able to detect and estimate the change point in time when a linear drift started. Public datasets have been used to assess whether ADL can be modelled by a mixture of circular normal distributions. Exhaustive experimentation was performed on simulated data to assess the validity of the change detection algorithm, the results showing that the difference between the real change point and the estimated change point was \(4.90_{+3.17}^{-1.98}\) days on average. ADL can be modelled using a mixture of circular normal distributions. A new method to detect anomalies following a linear drift is presented. Exhaustive experiments showed that this method is able to estimate the change point in time for processes following a linear drift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.