Abstract
In recent years, the number of pipes that have exceeded their service life has increased. For this reason, earthworm-type robots equipped with cameras have been developed to perform regularly inspections of sewer pipes. However, inspection methods have not yet been established. This paper proposes a method for anomaly detection from images in pipes using Generative Adversarial Network (GAN). A model that combines f-AnoGAN and Lightweight GAN is used to detect anomalies by taking the difference between input images and generated images. Since the GANs are only trained with non-defective images, they are able to convert an image containing defects into one without them. Subtraction images is used to estimate the location of anomalies. Experiments were conducted using actual images of cast iron pipes to confirm the effectiveness of the proposed method. It was also validated using sewer-ml, a public dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.