Abstract

The evolution of the Internet of Things (IoT) has empowered modern industries with the capability to implement large-scale IoT ecosystems, such as the Industrial Internet of Things (IIoT). The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational and financial harm to organizations. To preserve the confidentiality, integrity, and availability of IIoT networks, an anomaly-based intrusion detection system (IDS) can be used to provide secure, reliable, and efficient IIoT ecosystems. In this paper, we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks. The proposed anomaly-based IDS is divided into three phases: pre-processing, feature selection, and classification. In the pre-processing phase, data cleaning and normalization are performed. In the feature selection phase, the candidates’ feature vectors are computed using two feature reduction techniques, minimum redundancy maximum relevance and neighborhood components analysis. For the final step, the modeling phase, the following classifiers are used to perform the classification: support vector machine, decision tree, k-nearest neighbors, and linear discriminant analysis. The proposed work uses a new data-driven IIoT data set called X-IIoTID. The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%, a sensitivity rate of 99.59%, a specificity rate of 99.58%, and a low false positive rate of 0.4%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call