Abstract

Identifying anomalous samples from highly complex and unstructured data is a crucial but challenging task in a variety of intelligent systems. In this paper, we present a novel deep anomaly detection framework named AnoDM (standing for Anomaly detection based on unsupervised Disentangled representation learning and Manifold learning). The disentanglement learning is currently implemented by β-VAE for automatically discovering interpretable factorized latent representations in a completely unsupervised manner. The manifold learning is realized by t-SNE for projecting the latent representations to a 2D map. We define a new anomaly score function by combining β-VAE’s reconstruction error in the raw feature space and local density estimation in the t-SNE space. AnoDM was evaluated on both image and time-series data and achieved better results than models that use just one of the two measures and other deep learning methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call