Abstract

The detection and localization of anomalous behaviors in crowded scenes is considered, and a joint detector of temporal and spatial anomalies is proposed. The proposed detector is based on a video representation that accounts for both appearance and dynamics, using a set of mixture of dynamic textures models. These models are used to implement 1) a center-surround discriminant saliency detector that produces spatial saliency scores, and 2) a model of normal behavior that is learned from training data and produces temporal saliency scores. Spatial and temporal anomaly maps are then defined at multiple spatial scales, by considering the scores of these operators at progressively larger regions of support. The multiscale scores act as potentials of a conditional random field that guarantees global consistency of the anomaly judgments. A data set of densely crowded pedestrian walkways is introduced and used to evaluate the proposed anomaly detector. Experiments on this and other data sets show that the latter achieves state-of-the-art anomaly detection results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.