Abstract
Network security has been a really hot topic since the inception of the internet in the early ’80s. With millions of people entrusting their life savings in the hands of an organization, it is really necessary to keep the network intruders out of the system. The most alarming thing is that - even today, many organizations are detecting these intrusions through manual labour. Many researchers have proven that these intrusions have a certain pattern i.e. they can be detected with an Artificial Intelligence (AI) based system with enough training which can prove to be a really an effective substitute for manual labour. This paper explains the current trends in Network Intrusion Detection and the technologies that have been implemented to detect them. CICIDS2017 dataset containing around 3 million data points was used in this experiment. K-Nearest Neighbours (KNN) and Random Forest algorithms are used as the AI tools and their performance has also been compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.