Abstract

We show a generic formation of the primary magnetorotons in the collective modes of the observed "unconventional" fractional quantum Hall effect states of the composite fermions at the filling factors 4/11, 4/13, 5/13, 5/17, and 3/8 at very low wave vectors with anomalously low energies which do not have any analog to the conventional fractional quantum Hall states. Rather slow decay of the oscillations of the pair-correlation functions in these states is responsible for the low-energy magnetorotons. This is a manifestation of the distinct topology predicted previously for these fractional quantum Hall effect states. Experimental consequences of our theory are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call