Abstract

The anomalous warm winter from December 2019 to February 2020 over East Asia, particularly the anticyclonic anomaly around Japan, was examined from the teleconnection perspective anchored by a warmed Indian Ocean and the El Niño Modoki. In the upper troposphere, high–low–high wave patterns progressing from the Arabian Sea toward Japan via the southern region of China, coupled with the wave-activity flux diagnosis, implicate the propagation of stationary Rossby waves caused by enhanced convection in the western Indian Ocean and suppressed convection around the Maritime Continent. These anomalous convective activities could be responsible for the northward displacement of the subtropical jet and the ensuing warm conditions over East Asia. The atmospheric response to the observed diabatic heating by means of the linear baroclinic model well reproduced the observations. Moreover, sensitivity experiments of the atmospheric general circulation model to sea surface temperature (SST) anomalies, especially in the warmed western Indian and central Pacific oceans, can help understand the anomalous subsidence over the Maritime Continent sector and subsequently weakened convection. The warmer SST observed around the Maritime Continent alone reproduces the enhancement of rainfall and subsequent cold anomalies around Japan, suggesting the importance of trans-basin interaction for teleconnection towards East Asia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call