Abstract

Localization in one-dimensional disordered or quasiperiodic noninteracting systems in the presence of power-law hopping is very different from localization in short-ranged systems. Power-law hopping leads to algebraic localization as opposed to exponential localization in short-ranged systems. Exponential localization is synonymous with insulating behavior in the thermodynamic limit. Here we show that the same is not true for algebraic localization. We show, on general grounds, that depending on the strength of the algebraic decay, the algebraically localized states can be actually either conducting or insulating in thermodynamic limit. We exemplify this statement with explicit calculations on the Aubry-Andr\'e-Harper model in the presence of power-law hopping, with the power-law exponent $\ensuremath{\alpha}>1$, so that the thermodynamic limit is well defined. We find a phase of this system where there is a mobility edge separating completely delocalized and algebraically localized states, with the algebraically localized states showing signatures of superdiffusive transport. Thus, in this phase, the mobility edge separates two kinds of conducting states, ballistic and superdiffusive. We trace the occurrence of this behavior to near-resonance conditions of the on-site energies that occur due to the quasiperiodic nature of the potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.