Abstract

We derive the long-time dynamics of a tracer immersed in a one-dimensional active bath. In contrast to previous studies, we find that the damping and noise correlations possess long-time tails with exponents that depend on the tracer symmetry. For generic tracers, shape asymmetry induces ratchet effects that alter fluctuations and lead to superdiffusion and friction that grows with time when the tracer is dragged at a constant speed. In the singular limit of a completely symmetric tracer, we recover normal diffusion and finite friction. Furthermore, for small symmetric tracers, the active contribution to the friction becomes negative: active particles enhance motion rather than oppose it. These results show that, in low-dimensional systems, the motion of a passive tracer in an active bath cannot be modeled as a persistent random walker with a finite correlation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.