Abstract

The linear, non-linear, and anomalous transport properties associated with various microinstabilities driven by cross-field currents in high-temperature plasmas are reviewed. Particular emphasis is placed on instabilities pertinent to the implosion and post-implosion phases of theta-pinch plasmas, e.g. Buneman (electron-ion two-stream), ion acoustic, lower-hybrid-drift, electromagnetic ion cyclotron, and ion-ion cross-field instabilities. Analytic studies of the non-linear and quasi-linear evolution of these instabilities are presented, together with a detailed comparison with computer simulation experiments to test the validity of the various theoretical models and non-linear saturation mechanisms. A general theoretical formalism is presented which describes, in a self-consistent manner, the macroscopic transport produced by the (shortwave-length) turbulence associated with the microinstabilities enumerated above. The experimental evidence that such a self-consistent anomalous transport model is required for describing the implosion behaviour (characterized by diffuse current sheaths) in rapidly pulsed theta pinches is reviewed, together with the early attempts at modelling these implosions numerically with a one-fluid (MHD) model including artificial viscosity. It is shown that fluid-numerical simulations that include (at each space and time step) the effects of anomalous transport in a fully self-consistent manner, explain several features of the experimental observations. The relevance of reflected ions to sheath structure and implosion dynamics is also discussed, and state-of-the-art hybrid-numerical studies (Vlasov ions and fluid electrons) of pinch implosions are presented, which include reflected ion dynamics as well as the anomalous transport associated with cross-field instabilities. Finally, instability mechanisms for producing long-time interpenetration of plasma and magnetic field in post-implosion theta pinches are discussed, together with estimates of the anomalous resistivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.