Abstract

We study thermal transport in a chain of coupled atoms, which can vibrate in longitudinal as well as transverse directions. The particles interact through anharmonic potentials upto cubic order. The problem is treated quantum mechanically. We first calculate the phonon frequencies self-consistently taking into account the anharmonic interactions. We show that for all the modes, frequencies must have linear dispersion with wave vector q for small q irrespective of their bare dispersions. We then calculate the phonon relaxation rates Γi(q), where i is the polarization index of the mode, in a self-consistent approximation based on second-order perturbation diagrams. We find that the relaxation rate for the longitudinal phonon, Γx(q)∝q(3/2), while that for the transverse phonon Γy(q)∝q2. The consequence of these results on the thermal conductivity κ(N) of a chain of N particles is that κ(N)∝N(1/2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.