Abstract
Clock synchronization is critically important in positioning, navigation and timing systems. While its performance has been intensively studied in a wide range of disciplines, much less is known for the fundamental thermodynamics of clock synchronization‒what limits the precision and how to optimize the energy cost for clock synchronization. Here, we report the first experimental investigation of two stochastic autonomous clocks synchronization, unveiling the thermodynamic relation between the entropy cost and clock synchronization in an open cavity optomechanical system. Two interacting clocks are synchronized spontaneously owing to the disparate decay rates of hybrid modes by engineering the controllable cavity-mediated dissipative coupling. The measured dependence of the degree of synchronization on the overall entropy cost exhibits an unexpected non-monotonic characteristic, while the relation between the degree of synchronization and the entropy cost for the synchronization is monotonically decreasing. The investigation of transient dynamics of clock synchronization exposes a trade-off between energy and time consumption. Our results demonstrate the possibility of clock synchronization in an effective linear system, reveal the fundamental relation between clock synchronization and thermodynamics, and have a great potential for precision measurements, distributed quantum networks, and biological science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.