Abstract

We reveal a dramatic departure of electron thermodiffusion in solids relative to the commonly accepted picture of the ideal free-electron gas model. In particular, we show that the interaction with the lattice and impurities, combined with a strong material dependence of the electron dispersion relation, leads to counterintuitive diffusion behavior, which we identify by comparing a two-dimensional electron gas (2DEG) and single-layer graphene. When subject to a temperature gradient ∇T, thermodiffusion of massless Dirac fermions in graphene exhibits an anomalous behavior with electrons moving along ∇T and accumulating in hot regions, in contrast to normal electron diffusion in a 2DEG with parabolic dispersion, where net motion against ∇T is observed, accompanied by electron depletion in hot regions. These findings bear fundamental importance for the understanding of the spatial electron dynamics in emerging materials, establishing close relations with other branches of physics dealing with electron systems under nonuniform temperature conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call