Abstract

Clinochlore is a major hydrous mineral in subduction zones, and its thermophysical properties at high temperature and pressure are critical to the thermal structures of subduction zones. Here, we used the pulse heating method to measure thermal diffusivity and thermal conductivity of clinochlore at 0.5−4.0 GPa and 298−1373 K. Our results indicate that upon heating, thermal diffusivity and thermal conductivity decrease from ∼9.6 × 10−7 m2 s−1 to 4.3 × 10−7 m2 s−1 and from ∼3.5 W m−1 K−1 to 1.9 W m−1 K−1, respectively, before dehydration, but this trend is reversed after dehydration. In general, the pressure derivatives for the thermal transport properties also decrease with temperature before dehydration. Lattice heat transfer is the dominant mechanism before dehydration, but fluid is involved after dehydration. Using our experimental data, we simulated the temperature distribution of subducting slabs containing clinochlore at volume fractions of 0%, 10%, 20%, 50%, and 100%. Our simulations showed that the heat insulation effect caused by the presence of clinochlore could result in an increase in temperature by 30−60 K for the upper part of the subducting slab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call