Abstract

We study thermodynamics of strongly coupled lattice QCD with two colors of staggered fermions in 2+1 dimensions. The partition function of this model can be written elegantly as a statistical mechanics of dimers and baryon loops. The model is invariant under an SO(3) x U(1) symmetry. At low temperatures, we find evidence for superfluidity in the U(1) symmetry sector while the SO(3) symmetry remains unbroken. The finite temperature phase transition appears to belong to the Kosterlitz-Thouless universality class, but the superfluid density jump rho(s) (T(c)) at the critical temperature T(c) is anomalously higher than the normal value of 2T(c)/pi. We show that, by adding a small SO(3) symmetry breaking term to the model, the superfluid density jump returns to its normal value, implying that the extra symmetry causes anomalous superfluid behavior. Our results may be of interest to researchers studying superfluidity in spin-1 systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.