Abstract

Fluorescence photobleaching recovery (FPR) is commonly used to measure lipid and protein diffusion in cellular membranes. Typically, a model wherein diffusion is constant with time and the mean-squared displacement is directly proportional to time is used to analyze the results; however, in nonhomogeneous systems such as cellular membranes, anomalous subdiffusion may occur. In anomalous subdiffusion, the diffusion coefficient, D, decreases with time and thus the mean-squared displacement is proportional to some power of time less than 1. Although theory predicts that diffusion can be anomalous through protein interactions or obstruction, the complex composition of cellular membranes has made the actual origin and consequences of anomalous diffusion in phospholipid bilayers unclear. In this study, we use atomic force microscopy to detect and measure the amount of the solid phase in supported bilayers that contain coexisting fluid- and solid-phase lipids. Solid-phase domains in bilayers have been shown to a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.