Abstract
We use the hyper-netted chain approximation of liquid state theory to analyze the evolution with density of the pair correlation function in a model of soft spheres with harmonic repulsion. As observed in recent experiments on jammed soft particles, theory predicts an `anomalous' (nonmonotonic) evolution of the intensity of the first peak when density is increased at constant temperature. This structural anomaly is a direct consequence of particle softness, and can be explained from purely equilibrium considerations, emphasizing the generality of the phenomenon. This anomaly is also predicted to have a non-trivial, `${\cal S}$-shaped', evolution with temperature, as a result of a competition between three distinct effects, which we describe in detail. Computer simulations support our predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.