Abstract
Differential models for hydrodynamic, passive-scalar and wave turbulence given by nonlinear first- and second-order evolution equations for the energy spectrum in the k-space were analysed. Both types of models predict formation an anomalous transient power-law spectra. The second-order models were analysed in terms of self-similar solutions of the second kind, and a phenomenological formula for the anomalous spectrum exponent was constructed using numerics for a broad range of parameters covering all known physical examples. The first-order models were examined analytically, including finding an analytical prediction for the anomalous exponent of the transient spectrum and description of formation of the Kolmogorov-type spectrum as a reflection wave from the dissipative scale back into the inertial range. The latter behaviour was linked to pre-shock/shock singularities similar to the ones arising in the Burgers equation. Existence of the transient anomalous scaling and the reflection-wave scenario are argued to be a robust feature common to the finite-capacity turbulence systems. The anomalous exponent is independent of the initial conditions but varies for for different models of the same physical system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.