Abstract
Dynamic mechanical behavior and size-related impact resistance of CNT films are studied by employing laser-induced projectile impact test (LIPIT) and coarse-grained molecular dynamics (CGMD) simulation. The energy dissipation mechanisms of the CNT films are investigated via CGMD simulations. An evident anomalous thickness-dependent effect is directly observed in the experiment, consistent with simulation phenomena. The mechanisms underlying this anomalous thickness-dependent effect are investigated at the atomic scale. The disparities between experiments and simulations are discussed. Our analysis of energy dissipation modes, deformation behaviors during impact, and impact area reveals that kinetic energy change predominantly governs the deformation mode. Meanwhile, a plugging failure mode near the exit face of CNT film is identified at high impact velocity (∼160 m/s), leading to a deterioration in impact resistance and a corresponding reduction in SEA with increasing CNT film thickness. These findings provide a feasible strategy for the protection design of CNT film in broaden protective application scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.