Abstract
It is well known that electromagnetic waves radiated from the earth's crust are useful for predicting earthquakes. We analyze the electromagnetic waves received at the extremely low frequency band of 223Hz. These observed signals contain the seismic radiation from the earth's crust, but also include several undesired signals. Our research focuses on the signal detection technique to identify an anomalous signal corresponding to the seismic radiation in the observed signal. Conventional anomalous signal detections lack a wide applicability due to their assumptions, e.g. the digital data have to be observed at the same time or the same sensor. In order to overcome the limitation related to the observed signal, we proposed the anomalous signals detection based on a multi-layer neural network which is trained by digital data observed during a span of a day. In the neural network approach, training data do not need to be recorded at the same place or the same time. However, some noises, which have a large amplitude, are detected as the anomalous signal. This paper develops a multi-layer neural network to decrease the false detection of the anomalous signal from the electromagnetic wave. The training data for the proposed network is the decomposed signal of the observed signal during several days, since the seismic radiations are often recorded from several days to a couple of weeks. Results show that the proposed neural network is useful to achieve the accurate detection of the anomalous signal that indicates seismic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.