Abstract

We consider a one-dimensional conservation law with random space-time forcing and calculate the exponentially small probabilities of anomalous shock profile displacements using large deviations theory. Under suitable hypotheses on the spatial support and structure of random forces, we analyze the scaling behavior of the rate function, which is the exponential decay rate of the displacement probabilities. For small displacements we show that the rate function is bounded above and below by the square of the displacement divided by time. For large displacements the corresponding bounds for the rate function are proportional to the displacement. We calculate numerically the rate function under different conditions and show that the theoretical analysis of scaling behavior is confirmed. We also apply a large-deviation-based importance sampling Monte Carlo strategy to estimate the displacement probabilities. We use a biased distribution centered on the forcing that gives the most probable transition path for th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.