Abstract

65 Ma Deccan Volcanic Province of western India forms one of the largest flood basaltic eruptions on the surface of the earth. The nature of the concealed crust below this earthquake prone region, which is marked by several low velocity zones at different depths has hardly been understood. These low velocity zones have been invariably interpreted as fluid-filled zones, genetically connected to earthquake nucleation. While carrying out detailed geological and petrophysical studies on the Late Archean basement cores, obtained from a 617 m deep KLR-1 borehole, drilled in the epicentral zone of 1993 Killari earthquake region of the southern Deccan Volcanic Province, we came across several instances where we observed remarkable drop in measured P-wave velocity in a number of high density cores. We provide detailed petrographic and geological data on 11 such anomalous samples which belong to mid-crustal amphibolite to granulite facies transitional rocks. They are associated with a mean P-wave velocity of 6.02 km/s (range 5.82–6.22 km/s) conforming to granitic upper crust, but in contrast have a high mean density of 2.91 g/cm3 (range 2.75–3.08 g/cm3), which characterise mid to lower crust. This velocity drop, which is as much as 15 % in some cores, is primarily attributed to FeOT enrichment (up to about 23 wt%) during the course of mantle-fluid driven retrogressive metasomatic reactions, caused by exhumation of deep-seated mafic rocks. Presence of Iron content (mainly magnetite), widely seen as opaques in thin sections of the rocks, seems to have resulted into sharp increase in density, as well as mean atomic weight. Our study indicates that the measured Vp is inversely related to FeOT content as well as mean atomic weight of the rock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.