Abstract
A dynamic renormalization-group method is generalized to explore the anomalously dynamic scaling property of kinetic roughening growth equation and the general conclusion on the anomalous exponents of the growth equation with spatially and temporally correlated noise is drawn. The results of the anomalous exponents are employed in several typical local growth equations,which include the Kardar-Parisi-Zhang(KPZ)equation,linear equation and Lai-Das Sarma-Villain(LDV) equation, to judge the condition of anomalous scaling behaviors. Analysis shows that within the long wavelength limit the dynamic scaling property of a growth equation is related to the most relevant term, the dimension of the system and noise; and if the anomalous scaling of the equation exists, super_roughening instead of intrinsic anomalous roughening will be displayed in local growth models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.