Abstract

We analyze the high-temperature conductivity in one-dimensional integrable models of interacting fermions: the t-V model (anisotropic Heisenberg spin chain) and the Hubbard model, at half-filling in the regime corresponding to insulating ground state. A microcanonical Lanczos method study for finite size systems reveals anomalously large finite-size effects at low frequencies while a frequency-moment analysis indicates a finite d.c. conductivity. This phenomenon also appears in a prototype integrable quantum system of impenetrable particles, representing a strong-coupling limit of both models. In the thermodynamic limit, the two results could converge to a finite d.c. conductivity rather than an ideal conductor or insulator scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call