Abstract

Predicting transport rates of windblown sand is a central problem in aeolian research, with implications for climate, environmental, and planetary sciences. Though studied since the 1930s, the underlying many-body dynamics is still incompletely understood, as underscored by the recent empirical discovery of an unexpected third-root scaling in the particle-fluid density ratio. Here, by means of grain-scale simulations and analytical modeling, we elucidate how a complex coupling between grain-bed collisions and granular creep within the sand bed yields a dilatancy-enhanced bed erodibility. Our minimal saltation model robustly predicts both the observed scaling and a new undersaturated steady transport state that we confirm by simulations for rarefied atmospheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call