Abstract

We investigated the effects of soft dendritic polyethylene (dPE) nanoparticles on the rheological properties of a linear polystyrene (PS) matrix. The viscosity of PS–dPE nanocomposites is found to exhibit nonmonotonic dependence on the dPE concentration. In particular, with the addition of 1% dPE nanoparticles, we already observe more than 1 order of magnitude reduction in viscosity. The minimum viscosity was observed at 5% nanoparticles. At dPE concentrations higher than 5%, nanocomposite viscosity increases by addition of nanoparticles, yet it remains below the viscosity of PS. Addition of nanoparticles not only influences the terminal relaxation times of the nanocomposites but also affects their whole relaxation spectra. The viscosity of PS–dPE nanocomposites at high temperature is found to reversibly evolve with time, which proves the existence of supramolecular interactions between the PS matrix and the nanoparticles. Atomic force microscopy confirms that dPE nanoparticles are well distributed in the PS matrix, though each component of the nanocomposite exhibits its own glass transition. While the origin of viscosity reduction remains unknown, it cannot be attributed to confinement, free volume effect, change of entanglement density, surface slippage, shear banding, or particle induced shear thinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.