Abstract

A superfluid \(^3\)He film with a thickness of 1.25 \(\upmu \)m was studied using a microelectromechanical oscillator at various pressures of 9.2, 18.2, 25.2, and 28.6 bars. The oscillator was driven in the linear damping regime where the damping coefficient is independent of the velocity of the oscillator. The resonance frequency shows weak temperature and pressure dependences in the low temperature limit. An inertia coefficient of \(\approx \)0.1 was obtained in the ballistic regime. When the temperature rose from the lowest temperature, the resonance frequency of the resonator exhibited an unusual behavior, a rapid increase beyond the intrinsic value as temperature increases, for 9.2 and 18.2 bars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.