Abstract

We have employed the Hubbard relation to acquire semiquantitative information on the 13C spin−lattice relaxation rate of buckminsterfullerene in CS2. We found the spin rotation mechanism to be operative and its contribution to be significant at all temperatures studied here. With the exception of values at 303 K, we found very different chemical shift and spin rotation contributions in this solvent than in 1,2-dichlorobenzene-d4. In fact, the respective contributions were reversed at 313 K. This observation indicates that solvent effects play a critical role in determining how effective these mechanisms will be in a given solvent. Three hydrodynamic-based models were applied in an attempt at theoretically describing the rotational motion of the title molecule in CS2. The Stokes−Einstein−Debye (SED) model proved superior in duplicating our experimental findings. The agreement between the SED predictions and our experimental reorientational times suggests that C60 reorients in the “stick” limit where solute...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.