Abstract

The ionic mechanisms underlying anomalous rectification in large neurons from layer V of cat sensorimotor cortex were studied in an in vitro brain slice. The anomalous rectification was apparent as an increase of slope conductance during membrane hyperpolarization, and the development of anomalous rectification during a hyperpolarizing current pulse was signaled by a depolarizing sag of membrane potential toward resting potential (RP). Voltage-clamp analysis revealed the time- and voltage-dependent inward current (IAR) that produced anomalous rectification. IAR reversal potential (EAR) was estimated to be approximately -50 mV from extrapolation of linear, instantaneous, current-voltage relations. The conductance underlying IAR (GAR) had a sigmoidal steady-state activation characteristic. GAR increased with hyperpolarization from -55 to -105 mV with half-activation at approximately -82 mV. The time course of both GAR and IAR during a voltage step was described by two exponentials. The faster exponential had a time constant (tau F) of approximately 40 ms; the slow time constant (tau S) was approximately 300 ms. Neither tau F nor tau S changed with voltage in the range -60 mV to -110 mV. The fast component constituted approximately 80% of IAR at each potential. Both IAR and GAR increased in raised extracellular potassium [( K+]o) and EAR shifted positive, but the GAR activation curve did not shift along the voltage axis. Solutions containing an impermeable Na+ substitute caused an initial transient decrease in IAR followed by a slower increase of IAR. Brain slices bathed in Na+-substituted solution developed a gradual increase in [K+]o as measured with K+-sensitive microelectrodes. We conclude that GAR is permeable to both Na+ and K+, but the full contribution of Na+ was masked by the slow increase of [K+]o that occurred in Na+ substituted solutions. Chloride did not appear to contribute significantly to IAR since estimates of EAR were similar in neurons impaled with microelectrodes filled with potassium chloride or methylsulfate, whereas, ECl (estimated from reversal of a GABA-induced ionic current) was approximately 30 mV more positive with the KCl-filled microelectrodes. Extracellular Cs+ caused a reversible dose- and voltage-dependent reduction of GAR, whereas intracellular Cs+ was ineffective. The parameters measured during voltage clamp were used to formulate a quantitative empirical model of IAR.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call